Highly nonlinear solitary waves in chains of ellipsoidal particles.

نویسندگان

  • Duc Ngo
  • Devvrath Khatri
  • Chiara Daraio
چکیده

We study the dynamic response of a one-dimensional chain of ellipsoidal particles excited by a single compressive impulse. We detail the Hertzian contact theory describing the interaction between two ellipsoidal particles under compression, and use it to model the dynamic response of the system. We observe the formation of highly nonlinear solitary waves in the chain, and we also study their propagation properties. We measure experimentally the traveling pulse amplitude (force), the solitary wave speed, and the solitary wave width. We compare these results with theoretical predictions in the long wavelength approximation, and with numerical results obtained with a discrete particle model and with finite element simulations. We also study the propagation of highly nonlinear solitary waves in the chain with particles arranged in different configurations to show the effects of the particle's geometry on the wave propagation characteristics and dissipation. We find very good agreement between experiment, theory, and simulations for all the ranges of impact velocity and particle arrangements investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser-based excitation of nonlinear solitary waves in a chain of particles.

Highly nonlinear solitary waves (HNSWs) are stress waves that can form and travel in highly nonlinear systems. They are characterized by a constant spatial wavelength and by a tunable propagation speed, dependent on the wave amplitude. Conventionally, HNSW's are generated in one-dimensional chains of spherical particles by means of a mechanical impact. In this paper, we demonstrate that short-d...

متن کامل

Highly nonlinear solitary wave propagation in Y-shaped granular crystals with variable branch angles.

We study the propagation of highly nonlinear waves in a branched (Y-shaped) granular crystal composed of chains of spherical particles of different materials, arranged at variable branch angles. We experimentally test the dynamic behavior of a solitary pulse, or of a train of solitary waves, crossing the Y-junction interface, and splitting between the two branches. We describe the dependence of...

متن کامل

A Comparative Study on Three Different Transducers for the Measurement of Nonlinear Solitary Waves

In the last decade there has been an increasing interest in the use of highly- and weakly- nonlinear solitary waves in engineering and physics. Nonlinear solitary waves can form and travel in nonlinear systems such as one-dimensional chains of particles, where they are conventionally generated by the mechanical impact of a striker and are measured either by using thin transducers embedded in be...

متن کامل

Simplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas

The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.    

متن کامل

Highly nonlinear solitary waves in heterogeneous periodic granular media

We use experiments, numerical simulations, and theoretical analysis to investigate the propagation of highly nonlinear solitary waves in periodic arrangements of dimer (two-mass) and trimer (threemass) cell structures in one-dimensional granular lattices. To vary the composition of the fundamental periodic units in the granular chains, we utilize beads of different materials (stainless steel, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011